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In this paper the behavior of three well-known electron-sharing indexes, namely, the AIM delocalization
index and the Mayer and fuzzy atom bond orders are studied at the Hartree-Fock level. A large number of
five-membered ring molecules, containing several types of bonding, constitute the training set chosen for
such purpose. A detailed analysis of the results obtained shows that the three indexes studied exhibit strong
correlations, especially for homonuclear bonds. The correlation is somewhat poorer but still significant for
polar bonds. In this case, the bond orders obtained with the Mayer and fuzzy atom approaches are normally
closer to the formally predicted bond orders than those given by the AIM delocalization indexes, which are
usually smaller than those expected from chemical intuition. In some particular cases, the use of diffuse
functions in the calculation of Mayer bond orders leads to unrealistic results. In particular, noticeable trends
are found for C-C bonds, encouraging the substitution of the delocalization index by the cheaper fuzzy atom
or even the Mayer bond orders in the calculation of aromaticity indexes based on the delocalization index
such as the para-delocalization index and the aromatic fluctuation index.

Introduction

Since the early work of Mulliken,1 when one desires to
characterize the chemical structure of a certain molecule, the
first attempts usually point toward density-based descriptors.
Most popular indicators of electron distribution in a molecule
are the electron population and the bond order. The latter,
together with the quantities more generally labeled as “electron-
sharing indexes”sborrowing Fulton’s2 terminologyshave gained
first place in order to characterize the nature of the chemical
bond.

A number of bond orders are nowadays available for such
purposes: delocalization index (DI),3 Mayer bond order (MBO),4

those derived from natural bond orbital (NBO) analysis,5 or
fuzzy atom bond order (FBO)6 are just a few examples in a
never-ending list of indexes. The question of whether these
indexes can predict the same electron-sharing between the atoms
of a molecular system is still open. In this paper we choose
three of the most popular electron-sharing indexes (DI, MBO,
and FBO) with the aim of assessing their similarities and
analyzing possible divergences. As shown before,3,6,7 at the
Hartree-Fock (HF) level of theory these three indexes have a
similar expression since all of them share the same formula but
define the atomic regions in a different way. Thus, at least a
general agreement in their magnitudes is expected.

These bond orders have been sometimes referred to as
covalent bond orders.8,9 In fact, it has been also shown that at
the RHF level of theory the bond order between two atoms is
proportional to the expected value of the spin coupling between
their unpaired electrons.10

Theory. The three bond orders or electron-sharing indexes
studied in this work arise from the analysis of the so-called

exchange-correlation density:11

which is defined through the diagonal terms of the spinless first-
order,γ1(r), and second-order,12 γ2(r1,r2), density matrixes. The
exchange-correlation density accounts for the difference between
an independent electron model and a “true” electron pair one
and integrates to the number of electrons in the system:

For a single determinant wave function, hence within the HF
framework, the second-order spinless density matrix can be
obtained through the nondiagonal terms of the first-order one:

Thus, the HF exchange-correlation density takes the well-known
simple form:

Note that we could have writtenγx instead ofγxc in eq 4 as at
the HF level the Coulomb correlation is not included. Substitu-
tion of eq 4 into eq 2 leads to

The goal now is to exactly decompose the two-electron integral
of eq 5 into one- and two-atom contributions. The corresponding
diatomic contributions give rise to the bond order between the
two atoms involved (the one-atom contributions are called

* Address correspondence to either author. Fax:+34 972 418356.
E-mail: pedro.salvador@udg.es (P.S.), miquel.sola@udg.es (M.S.).

† Universitat de Girona.
‡ Vrije Universiteit.

γxc(r1,r2) ) γ1(r1)γ
1(r2) - γ2(r1,r2) (1)

∫∫γxc(r1,r2) dr1 dr2 ) N2 - N(N - 1) ) N (2)

γ2(r1,r2) ) γ1(r1)γ
1(r2) - 1

2
γ1(r1,r2)γ

1(r2,r1) (3)

γxc(r1,r2) ) 1
2

γ1(r1,r2)γ
1(r2,r1) ) 1

2
|γ1(r1,r2)|2 (4)

N ) ∫∫γxc(r1,r2) dr1 dr2 ) 1
2∫∫γ1(r1,r2)γ

1(r2,r1) dr1 dr2

(5)

9904 J. Phys. Chem. A2005,109,9904-9910

10.1021/jp0538464 CCC: $30.25 © 2005 American Chemical Society
Published on Web 10/11/2005



localization indexes within the Atoms in Molecules (AIM)13,14

framework, whereas twice the diatomic contributions are often
referred as delocalization indexes (DIs)3,15). The strategy that
allows us to obtain such one- and two-atom contributions is
briefly discussed below.

Delocalization Index (DI). The basic idea behind a 3D
physical space partitioning analysis is to assign every pointr
of the physical space to a given atom. That is, each atom has a
region of the space assigned to it (usually called “atomic
domain” or “atomic basin”). The integral of a monoelectronic
function can be performed, often numerically, over each atomic
domain giving the corresponding atomic contribution to it. It is
evident that if the partitioning of the physical space is exhaus-
tive, the total integral can be exactly recovered by summing all
atomic contributions. Similarly, the integral of a two-electron
function will be decomposed as the sum over all pairs of atomic
contributions.

The decomposition of the space into atomic domains is
usually carried out within the framework of the AIM theory.13,14

In this context, the so-called DI,3,15,16δAIM(A,B), between atoms
A and B is obtained by integration of the exchange-correlation
density over the atomic domains of atoms A and B (ΩA and
ΩB):

By virtue of the relation (eq 1), the previous expression can be
written as

where the quantities〈NA〉 and〈NANB〉 correspond to the expected
number of electrons and electron pairs over the atomic domain
ΩA and the atomic pair domain{ΩA, ΩB}, respectively.
Equation 7 is very important as it shows that the DI can be
related to thecoVarianceof the populations in the domains of
atoms A and B:

which in turn is a measure of the correlation between both
populations. When the wave function is expressed as a single
determinant, like in the present work, the DI can be easily
obtained from the numerical integration of eq 5 over the atomic
domains:

For a closed-shell system, the DI can be expressed as

whereSij
A is the overlap between doubly occupied molecular

orbitals (MOs)i and j over the basin of atom A.

Using the expansion of the MOs as a linear combination of
atomic orbitals (LCAO), the first-order density matrix for a
single-determinant closed-shell wave function

can be expressed in terms of the set of basis functions{øµ}
where the wave function is expanded, and the elements of the
so-called density matrix,D, are defined as:

with C being the matrix containing the MO coefficients.
Substituting eq 11 into eq 9, we are left with an alternative
expression forδAIM(A,B):

where the atomic overlap matrix elements of atom A are given
by

An interesting property of the DI thus defined is that it is a
nonnegative quantity. Indeed, according to eq 4 the exchange-
correlation density for a single-determinant wave function is a
nonnegative two-electron function. Even though this property
of the exchange-correlation density does not hold at the
correlated level, the DIs are necessarily nonnegative because,
for a given pair of atoms, any increase of〈NA〉 necessarily
implies a decrease of〈NB〉; hence the covariance17 of both
quantities is negative (negative slope).

The DI was originally defined by Bader as ameasure of the
extent of the correlatiVe interactions between electrons into
different regions15 and was only later studied as a bond order.2,7,9

The fact that for unequally shared electron pairs the DI provides
a bond order value lower than the formally expected18 supports
the association of the DI with acoValent bond order.8,9,19 In
1999, Fradera et al.3 revised the index and defined it as an
electron-sharing index, refusing the idea of using it as a bond
order (covalent or not) for several reasons.3,20 It is worth
mentioning that, in the single-determinant approach, the defini-
tions of the bond order given by Fulton and co-workers2,21-24

and AÄ ngyán et al.7 fully coincide with the DI defined in the
framework of the AIM theory. Finally, this index has been
studied at both correlated (CISD)3,25-27 and non-correlated levels
(HF), and with the intention of computing the indexes for a
DFT calculation, Kohn-Sham orbitals were also used as an
approximation to recover the pair density.26

Fuzzy Atom Bond Order (FBO). Another approach that has
been recently explored in the context of population analysis28,29

and later on bond order6 and energy decomposition schemes30

is the use of “fuzzy atoms”, where the atomic domains do not
have boundaries. Instead, at every pointr of the space a weight
factorwA(r) is defined for each atom (A) to measure to which
extent the given point belongs to atom A. These atomic weight
factors are chosen to be nonnegative and to satisfy the following
condition when summing over all atoms of the system:
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To decompose the exchange-correlation density into atomic pair
contributions, one simply substitutes eq 11 in the right-hand
side of eq 5 and inserts the identity of eq 15 for the coordinates
of the two electrons in each of the integrals to obtain

where “atomic” overlap matrix elements for an atom A are now

The bond order between atoms A and B is defined analogously
to eq 13 as

Note that eqs 13 and 18 only differ in the definition of the atomic
overlap matrix elements. Also, since the weight factors are
strictly nonnegative, the bond order within the framework of
the fuzzy atoms is a positive quantity as well.

Finally, the DI can be understood as a special case of the
FBO where the weight factors are simply defined aswA(r) ) 1
∧ wB(r) ) 0 ∀ B * A if r ∈ ΩA, that is, a Bader atom.

Mayer Bond Order (MBO). Substitution of the exchange-
correlation density corresponding to a closed shell monodeter-
minantal wave function (eq 11) into eq 5, followed by LCAO
replacement of the MOs and substitution of the integrations over
atomic basins by a Mulliken-like partitioning of the correspond-
ing integrals leads to, after trivial manipulations, the well-known
definition of the Mayer bond order (MBO):4,31-34

where the overlap matrix elements are defined as:

It is worth noting that the expressions for the DI, FBO, and
MBO given in eqs 13, 18, and 19, respectively, only differ in
the definition of the atomic overlap matrix elements.

The same expression can be derived fromthe one-atom
spinless first-order density matrix,35 defined as follows:

being the total first-order density the sum of the atomic
contributions:

An effective HF exchange-correlation density between atoms
A and B can be built from the corresponding pairs of one-atom
densities of atoms A and B according to

The integration of this function gives directly the same
expression as eq 19 for the bond order between atoms A and B
in a more intuitive way:

The MBO, as most of the Hilbert-space based methods, is
especially sensitive to the basis set used in the calculation.7,36

Particularly, the inclusion of diffuse functions that lack of a
marked atomic character can destroy the chemical picture of
the molecular system. The index is also ill-defined when bond
functions are included or for a non-LCAO-type calculation. It
is, however, very easy to calculate and computationally inex-
pensive. In particular, the DI involves numerical integration over
the atomic domains, which is sometimes a CPU demanding
procedure due to the complex topology the domains can exhibit
(sometimes the integration can fail). Also, if nonnuclear
attractors are found in the electron density the chemical picture
of the molecule is lost, since there are regions of the physical
space that are not assigned to any atom of the molecule. On
the other hand, both the DI and FBO are more stable with
respect to the change in the basis set,3,6,16 at the expense of a
bigger computational effort.

The numerical integrations to be carried out within the fuzzy
atom framework are sensibly less expensive and straightforward
than those involving the DI. Since the expression for the DI is
analogous to that of the FBO, one is tempted to use the atomic
overlap matrix elements obtained using fuzzy atoms and hence
use the FBO for the calculation of other existing DI-based
indices such as the para-delocalization index (PDI)37,38 and
aromatic fluctuation index (FLU)39 aromaticity descriptors.
However, there is a certain degree of arbitrariness concerning
the definition of the weight factors that characterize the fuzzy
atoms. In the actual implementation of the method, the authors
used Becke’s method40 for multicentric integration, where the
weight factors are obtained through an algebraic function for
each atom that is equal to one in the vicinity of the respective
nucleus and progressively decreases to zero with the distance.
This function depends on some set of atomic radii and a so-
called stiffness parameter that controls the “shape” of the atom.
Other weight functions have been used, including Hirshfeld’s41

original idea of promolecular densities. Nevertheless, even
though numerical experience seems to indicate that reasonable
results can be obtained using Becke’s function, it is mandatory
to explore the effect of, for example, using a different set of
atomic radii.

Therefore, the aim of the present work is to shed light on the
following questions: (a) to what extent three of the most popular
electron sharing indexes can predict the same electron pair
distribution in a molecule?; (b) can the fuzzy atom-based bond
order be used instead of the more expensive AIM-based
counterpart?; and (c) are the fuzzy atoms bond orders stable
enough with respect to the change of the atomic radii used to
define the weight factors? To this end, we have computed the
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DI, FBO, and MBO values for a subset of 117 five-membered
ring molecules (see Scheme 1) of those 219 chosen by Cyran´ski
et al.42 to test different aromaticity indexes. This set of molecules
yielded 3619 different measures of the indexes, with a rich
variety of bonds (see caption of Scheme 1), including a
considerable number of C-C bonds in different bonding
situations. With this large and diverse set of bonds we can better
grasp reliable conclusions about Mayer, fuzzy atom, and AIM
bonding description abilities.

It is worth noting that a comparison between the DI and MBO
results was already carried out by AÄ ngyán et al.7 and Bocchic-
chio et al.43 for a reduced set of simple molecules. These authors
concluded that the picture of bonding for nonpolar chemical
bonds given by DI and MBO is practically equivalent. However,
for polar bonds, the difference between these two indexes
becomes significant. In particular, the DI yields bond ionicities
much greater than the MBO approach. In the present work, we
extend these previous investigations by performing a systematic
and exhaustive study on 3619 different types of chemical
interactions. In addition, for the first time, the analysis includes
the recently defined FBOs. An especial attention will be paid
to the C-C bond orders.

Computational and Technical Details

We have performed single-point calculations of all analyzed
molecules at the HF level with the 6-311+G** basis set on the
geometries reported by Cyran´ski et al.,42 which were optimized
at the MP2 level with the same basis set. In some particular
cases the 6-311G** basis has also been used (see below). All
electronic structure calculations were performed with Gaussian
98.44 The DIs were obtained using a slightly modified version
of the AIMPAC45 package. Fuzzy atom bond orders were
calculated with the FUZZY code,6,46 which implements a
Becke’s multicenter integration algorithm with the Chebyshev
and Lebedev radial and angular quadratures, respectively. A grid
of 30 radial by 100 angular points per atom has been used in
all cases. We have employed the Becke’s algebraic function
with the recommended stiffness parameterk ) 3. We have used
the set of atomic radii determined by Suresh and Koga,47 except
as otherwise indicated.

From the set of 219 molecules of Cyran´ski et al.,42 we have
chosen those containing two conjugated double bonds, as
detailed in Scheme 1. Additionally, the molecules were chosen
on the basis of their accurate and easy numerical integration
with program AIMPAC, so that we could get correct measures
of DI. The total number of studied molecules was finally 117.
As a whole, from 122 molecules with conjugated double bonds
present in ref 42, we have ruled five out because of integration
problems.48

Results and Discussion

Figures 1-3 show the correlation between the MBO, the bond
order derived from the partitioning of the molecular space in

fuzzy atoms (FBO) and the Bader’s AIM DI. In all of the figures
we can clearly distinguish two regions: one corresponding to
the bonded pairs of atoms, with appreciable values for the bond
order, and another containing nonbonded pairs, with values
below 0.5. In the three plots, the points of nonbonded pairs of
atoms organize on a round shape fashion, showing no clear
tendency; fluctuating from index to index. This lack of trend
leads us to assert that, apparently, no reliable comparison of
the indexes can be done within nonbonded pairs of atoms.
Nevertheless, we are currently exploring this issue in deeper
detail.

The first plot (Figure 1) shows the correlation between the
DI and the FBO indexes. The points corresponding to bonded
pairs organize in a thick band centered slightly below they )
x line; thus, almost all bonded pairs of atoms exhibit a higher
value of the FBO than the DI. However, the correlation is quite
good, especially for homonuclear apolar bonds. The two groups
of points enclosed with a square and a circle in Figure 1 are
the two major sets of uncorrelated bond orders. The first group
consists of bond orders involving B, Be, or Al atoms. The
number of electrons shared by these atoms is drastically
decreased within the AIM framework. This is not surprising
since DIs of 0.272, 0.503, and 0.393 were already reported3 for
the corresponding hydrides (BeH2, BH3, AlH3) at the HF/6-
311++G** level of theory (electron correlation has a minor
effect on these values3,26). At the same level of theory, the FBOs
are 0.986, 0.977, and 0.949, respectively. This difference in bond
orders is the result of the different space partitioning, and it is
in line with the big difference in the net atomic charges given
by the two schemes. The calculated Bader atomic partial charges
of Be, B, and Al atoms in the hydrides were+1.7, +2.1, and
+2.36 au while the fuzzy atom approach leads to significantly
smaller atomic charges of 0.06,-0.18, and 0.39, respectively.
Indeed, in the case of BH3, when the atomic radius of B in the
FBO calculation is adjusted in order to reproduce the AIM
charges, the FBO value drops down to 0.519, quite close to the
DI value. This seems to indicate that, similar to DI, the FBO
values can be very small for bonded interactions provided that
strong ionicity is also predicted. Nevertheless, since the adjusted
value of the B radius is as low as 0.22 au, generally one should
not expect FBO to provide such small values when using

SCHEME 1: Structures of the Molecules Studied with
X1, X2, X3, X4 ) C, N or P, Y ) BeH-, B-, BH, BH2

-, O,
S, NH, PH, CH-, CH2, CF2, N-, NH2

+, Al-, AlH,
AlH 2

-, SiH+, SiH2, P-, PH2
+, GaH, GaH2

-, GeH-,
GeH+, GeH2, As-, AsH, AsH2

+, Se, CdCH2, CdO, CdS
or CdSe

Figure 1. Plot of delocalization index (DI) against bond order from
fuzzy partitioning (FBO).

Comparison of Three Electron-Sharing Indexes J. Phys. Chem. A, Vol. 109, No. 43, 20059907



balanced sets of atomic radii. The fact that atomic charges and
bond orders are not observables prevents distinguishing between
any of the two possible interpretations of these results, that is,
either the DI overemphasizes the ionic with respect to the
covalent character or the FBO underestimates the ionic character
of the chemical bonds. However, in this case, the FBO results
are more consistent with the expected formal bond orders. The
data within the square in Figure 1 correspond to P-O-type
bonds. These are considered as single bonds within AIM (δAIM-
(P,O)≈ 0.8), while FBO reports a bond multiplicity between
single and double (δFBO(P,O)≈ 1.4). Previous calculations by
Chesnut49,50 on P-O bonds also yield DI values lower than
expected from the formal multiplicity of the bonds. Thus,
Chesnut reports for formally single P-O bonds DI values of
0.60-0.90 au and of 1.40 and 1.54 au for formal PdO double
bonds. It seems clear from the data presented that DI values
are sometimes too small to be considered as bond order indexes
from the classical point of view. However, even though Bader
and co-workers3 refuse the idea of using the DI as a bond order,
its expression at the HF level is deeply connected with other
bond order indexes. Thus, a priori one would have expected a
more similar behavior between the DI and the analogous FBO
indexes.

In Figure 2 the correlation of DI and MBO indexes is
depicted. The data on this plot are somewhat more spread,
especially in those regions marked with circles and a square,
which will be discussed in greater detail later. Again, no
correlation is observed for the nonbonding interactions (bottom
left data) with DIs below 0.3 au. As a general trend, formal
bond orders for homonuclear chemical bonds are well-
reproduced by both DIs and MBOs, whereas DIs yield rather
systematically lower bond orders than MBOs for polar bonds.7,43

In this sense, most values of the bond order tend to appear below
they ) x line. In fact, the largest calculated DI is 2.00, whereas
for MBO values up to 2.15 have been frequently observed.

Although the correlation between both indexes is rather good,
there are again some particular bond types that are poorly
correlated. The encircled points mostly contain data obtained
for bonds involving phosphorus atom, such as P-O, P-C, or
P-N. The MBO values for these bonds are, in general, below
0.5, yielding negative values in some particular cases. The
explanation for this odd behavior of the MBO in these cases is

given below. The bonding interactions involving B, Be, and Al
atoms (data inside the square) are in line with the aforemen-
tioned underestimation of the bond order by the DIs in polar
bonds. Now this hypothesis is put forward in the light of the
values assigned by MBO, which yields values of ca. 0.9 for
single (B, Be, Al)-X bonds, much closer to the FBO than to
the DI. Finally, some points are clearly off of the correlation.
For instance, in the top left and center of the plot, two points
with a DI of ca. 1.8 present a corresponding MBO of 0.25 and
1.1. These values correspond to CdS and CdSe bond types,
respectively. The MBO values are clearly too small. We have
repeated the calculation for these two molecules with different
basis sets in order to determine whether it can be assigned to a
basis set deficiency. It has been found that increasing the basis
set quality up to 6-311++G(2df,pd) barely changes the value
of the bond order. However, with the 6-311G** basis set, the
MBO values increase up to 1.89 and 1.76, respectively. Thus,
as already reported,7 including diffuse functions in the calcula-
tion can dramatically affect the MBO values. This deficiency
is also well-known for other Hilbert-space descriptors such as
Mulliken charges.51 The observed discrepancies in the P-(C,
N, O) bonds pointed out above can also be attributed to the
effect of the diffuse functions on the calculation of MBOs.

Finally, the correlation between MBO and FBO is shown in
Figure 3. Most of the data appear below they ) x line, so that
the FBO values are in general larger than the MBO ones. Again,
the bond type that exhibits more dispersion in the calculated
values involves the phosphorus atoms due to poor MBO values
induced by the use of diffuse functions. The most dramatic case,
however, corresponds to an Al-C bond with a FBO value close
to 1 that presents an unphysical negative MBO value. The
corresponding MBO value calculated from a HF/6-311G** wave
function yields 0.60.

In conclusion, we can say that there is a general good
agreement in the trends showed by the three indexes. This is
especially true for homonuclear interactions. In this case,
unsurprisingly, the different methods of partitioning the mo-
lecular space produce comparable partitioning schemes and,
consequently, lead to similar bond orders. The correlation
becomes poorer for polar bonds. In particular, the DI values
for polar bonds were normally slightly below the expected
values. In addition, large deviations are found for bonds
involving phosphorus atoms. In this latter group of molecules,
the MBO method often fails to properly describe the bonding,
due to the effect of diffuse functions lacking of marked atomic

Figure 2. Plot of delocalization index (DI) against Mayer bond order
(MBO).

Figure 3. Plot of Mayer bond order (MBO) against bond order from
fuzzy partitioning (FBO).
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character. For bonds involving B, Be, and Al atoms, the DI
values differ considerably from both FBO and MBO ones,
leading to unrealistically low bond orders.

From the groups of indexes studied we have extracted those
concerning C-C bonding interactions. Analogous correlations
to those depicted in Figures 1-3 have been constructed for this
subset, consisting of 179 values, and plotted in Figures 4-6.
As expected from the fact that we restrict the comparison of
bond orders to homonuclear bonds, the agreement is better
between DI and FBO values, whereas some points are off of
the correlation in Figures 5 and 6 where MBO is correlated.
However, again, one has to bear in mind that these points out
of the trend may be due to the use of diffuse functions. It is
also worth mentioning that the FBO values are systematically
larger than MBO or DI ones. Nevertheless, the results are
encouraging since all plots show good correlations (Pearson
coefficient is always abover ) 0.96) between the three methods.
This opens up the possibility of using either the FBO or MBO
procedures to construct reliable bond order-based indices instead

of the existing computationally demanding AIM-based ones.
In particular, we plan to explore this possibility for PDI and
FLU.37,39

As aforementioned, the weight factors that control the shape
and size of the fuzzy atoms are not uniquely defined. An
exhaustive analysis of the effect of different weight factors upon
the fuzzy atom derived indices probably deserves special
attention, and it is out of the scope of the present work.
Nevertheless, we have tested the effect of taking a different set
of atomic radii that are used to determine the weight factor
according to Becke’s function. In particular, we have chosen
the empirical set of Slater-Bragg.52 The comparison of the
FBOs computed with both sets of atomic radii is shown in
Figure 7. Both sets of values are practically coincident (r )
1.000), even for the “nonbonded pairs”. Indeed, contrary to
electron populations, bond orders have been proved to be very
stable with respect to dramatic changes in atomic radii of atoms,
such as changing the value for a particular atom and keeping
the rest invariant.53

Conclusions

Three different sharing indexes, namely, the DI, the FBO,
and the MBO have been compared for a large group of five-
membered rings with a rich variety of bonds. In general, there
is a good agreement with the exception of bonds involving P,

Figure 4. Correlation of delocalization index (DI) with bond order
from fuzzy partitioning (FBO) for the 179 different C-C bonds
contained in our training set of molecules; correlation coefficientr )
0.9765.

Figure 5. Correlation of delocalization index (DI) with Mayer bond
order (MBO) for the 179 different C-C bonds contained in our training
set of molecules; correlation coefficientr ) 0.9687.

Figure 6. Correlation of Mayer bond order (MBO) with bond order
from fuzzy partitioning (FBO) for the 179 different C-C bonds
contained in our training set of molecules; correlation coefficientr )
0.9646.

Figure 7. Correlation of bond order from fuzzy partitioning (FBO)
calculated using Koga vs Slater-Bragg atomic radii sets; correlation
coefficient r ) 1.0000.
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Al, B, and Be atoms. For the last three significant differences
of the DI results and the FBO or MBO values are found. On
the basis of previous results on the hydrides of Be, B, and Al,3

we consider that the DI values are underestimated for these
systems because of the reduced size of the Be, B, and Al atomic
basins within the AIM partitioning of the molecular space. As
far as P bonds are concerned, the answers differ from index to
index. For these bonds, the MBO suffers from strong basis set
dependence (the use of diffuse functions dramatically decreases
the bond order), although its values are closer to the FBO ones
if more atomic(without diffuse functions) basis sets are used.
With respect to the remaining types of bonds, good correlations
are achieved between the three indexes, with most points
following the expected trend despite some exceptions. This
drives us to conclude that, in general, the three indexes predict
the same electron pair distribution. The agreement between DI,
FBO, and MBO results is particularly good for homonuclear
bonds. In particular, noticeable trends are found for C-C bonds,
encouraging the substitution of the DIs by the cheaper FBOs
or even the MBOs in aromatic indexes based on DI such as the
PDI and FLU. This issue is currently being investigated in our
laboratory.

Note Added in Proof. Soon after the manuscript was
accepted, a paper appeared in this journal by Torre et al. (Torre,
A.; Alcoba, D. R.; Lain, L.; Bochicchio, R. C.J. Phys. Chem.
A 2005, 109, 6587) that discusses the use of fuzzy atoms to
determine three- and two-center bond indices.
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